中文字幕免费精品_亚洲视频自拍_亚洲综合国产激情另类一区_色综合咪咪久久

華東師范大學(xué)”Hopf代數(shù)量子群與表示論“2014年暑期學(xué)校招生簡章
來源:華東師范大學(xué)網(wǎng) 閱讀:2205 次 日期:2014-06-04 08:54:20
溫馨提示:易賢網(wǎng)小編為您整理了“華東師范大學(xué)”Hopf代數(shù)量子群與表示論“2014年暑期學(xué)校招生簡章”,方便廣大網(wǎng)友查閱!

《ECNU 2014 Hopf代數(shù)、量子群與表示論暑期學(xué)校及工作營》

2014.7.27---8.9, 華東師范大學(xué)數(shù)學(xué)系擬將舉辦研究主題為《Hopf代數(shù)、量子群與表示論》的為期兩周的研究生暑期學(xué)校,含2天的學(xué)術(shù)會(huì)議。Kaplansky 1975年在Hopf代數(shù)領(lǐng)域提出的10個(gè)猜想一直引領(lǐng)著該領(lǐng)域的發(fā)展,近10多年來,隨著量子群發(fā)展步入新階段,也推動(dòng)著Hopf代數(shù)領(lǐng)域尤其是分類工作的迅猛發(fā)展,其研究方法、思想手段、觀點(diǎn)看法的更新和深入日新月異,近年來最重大的突破是Andruskiewitsch-Schneider 完成了“以有限Abel群代數(shù)為余根基的有限維點(diǎn)Hopf代數(shù)分類工作”---2010年發(fā)表在國際頂級數(shù)學(xué)刊物美國數(shù)學(xué)年刊Annals Math.上,引發(fā)了新的國際研究熱點(diǎn)。

華東師大數(shù)學(xué)系胡乃紅教授為本次暑期學(xué)校邀請了工作在Hopf代數(shù)、量子群和表示論國際前沿的著名專家和學(xué)者:Hopf代數(shù)分類學(xué)權(quán)威專家來自阿根廷的Andruskiewitsch教授、量子群著名專家巴黎七大Rosso教授、澳大利亞悉尼大學(xué)著名數(shù)學(xué)物理及不變量專家張瑞斌教授(中科大千任計(jì)劃學(xué)者)、俄羅斯著名模李代數(shù)及Hopf代數(shù)專家Skryabin 研究員、美國李理論與同調(diào)代數(shù)專家Feldvoss教授,分別來講授每人8小時(shí)的短課程,共計(jì)40學(xué)時(shí)。暑期班將開設(shè)以下課程:

(1) On Classification of Pointed Hopf algebras, by N. Andruskiewitsch;

(2) Cofree Hopf algebras and quantum groups, by M. Rosso;

(3) Hopf algebras and their Actions, by S. Skryabin;

(4) Introduction to Lie superalgebras and their representations, by R.B. Zhang

(5) Introduction to Support Varieties and Applications, by J. Feldvoss.

[課程內(nèi)容介紹]

(1) On Classification of Pointed Hopf algebras

1. Nichols algebras. The braid equation. Braided vector spaces and Yetter-Drinfeld modules. Alternative definitions of Nichols algebras. Basic examples. Approximations of Nichols algebras.

2. Nichols algebra of diagonal type. The PBW theorem of Kharchenko. The classification of Heckenberger. Relations with Lie (super) algebras.

3. The Weyl groupoid. Coxeter groupoids. Crystallographic data and Weyl groupoid data. Outline of the classification. Convex orders.

4. Defining relations for Nichols algebra of diagonal type. Convex orders. Quantum Serre relations and their generalizations; powers of root vectors relations.

5. The lifting method. Hopf algebras generated by the coradical. The coradical filtration and the standard filtration. The associated graded Hopf algebras. Bosonization and the role of Nichols algebras.

6. Deformations of Nichols algebras. The general strategy. Classification results for pointed Hopf algebras with abelian group.

7. Nichols algebra of group type. Racks and cocycles. Classification of simple racks. Examples of finite-dimensional Nichols algebras of group type. The Fomin-Kirillov algebras.

8. Pointed Hopf algebras with non-abelian group. The collapsing criteria. Classification results for pointed Hopf algebras with non-abelian group.

(2) Cofree Hopf algebras and quantum groups Abstract: Connected cofree Hopf algebras have a universal property allowing the construction of many compatible Hopf algebra structures. They were classified by J-L Loday and M. Ronco, and familiar examples include shuffle Hopf algebras and quasi-shuffle Hopf algebras which appear in many domains of mathematics: combinatorics, number theory (multiple zeta values), Rota-Baxter algebras, ...

Replacing the ground field by a Hopf algebra H leads to a wide extension of the framework; the relevant category is that of Hopf bimodules M over H, and for each M, one can associate a natural (not connected) cofree coalgebra, first introduced by W. Nichols. The classification of compatible Hopf algebra structures leads, in particular examples, to quantum quasi shuffle algebras and to a new construction of quantized envelopping algebras. This provides a new framework to construct representations.

(3) Hopf algebras and their Actions

Abstract. Hopf algebras have found important applications in various areas of mathematics. At the same time the structural properties of Hopf Algebras remain far from being fully understood.This series of lectures will start at the basics of the theory and will move gradually on towards deeper results describing ring-theoretic properties of Hopf algebras, their actions and coactions on associative algebras. Particular questions discussed are conditions ensuring that a Hopf module algebra is Frobenius or quasi-Frobenius, existence of classical quotient rings for Hopf module algebras, extension of the module structure to quotient rings, projectivity and faithful flatness of Hopf algebras over Hopf subalgebras and right coideal subalgebras. An important tool in the study are equivariant and coequivariant modules.

(4) Introduction to Lie superalgebras and their representations

Outline:

1. Lie superalgebras The general linear Lie superalgebra gl(m|n), orthosymplectic Lie superalgebra osp(m|2n); simple Lie superalgebras of classical type.

2. Invariant theory Tensor representations of gl(m|n), first fundamental theorem of invariant theory for gl(m|n), Schur-Weyl duality, a super duality; tensor representations of osp(m|2n), Schur-Weyl-Brauer duality.

3. Parabolic category O of gl(m|n) Parabolic category O; canonical bases of quantum gl(∞); Kazhan-Lusztig polynomials of gl(m|n); a closed character formula and dimension formula; Jantzen filtration for Kac modules.

4. Finite dimensional representations of osp(m|2n) Flag supermanifolds; elements of Bott-Borel-Weil theory for osp(m|2n); a combinatorial algorithm for computing characters.

(5) Introduction to Support Varieties and Applications Abstract: In this series of lectures I will start out by defining the complexity of a finite dimensional module over a self-injective algebra and prove its main properties. All this is well-known for group algebras of finite groups, or more generally of finite group schemes, but is valid in this more general context. Then I will explain that for certain algebras over an algebraically closed ground field the complexity of a module can be realized as the dimension of an affine variety, the so-called support variety of the module. I will describe several properties of support varieties and I will present several applications of these concepts which were introduced originally for modular representations of _nite groups by Alperin and Carlson in the late seventies and the early eighties. In particular, I will define the representation type of an associative algebra and state the trichotomy theorem of Drozd. Then I will explain how support varieties can be used to prove a \theorem" of Rickard for self-injective algebras with finite cohomology. Finally, this will be applied to reduced enveloping algebras of restricted Lie algebras, to small quantum groups (a proof of Cibils' conjecture), and if time permits to Hecke algebras of classical type.

[暑期學(xué)校規(guī)模]

本暑期學(xué)校預(yù)設(shè)的聽眾是本校代數(shù)方向的感興趣的碩士生、博士生、博士后和青年教師,以及本校畢業(yè)的相關(guān)方向的青年教師和博士后,并接受部分兄弟院校相關(guān)方向的博士研究生,總的聽眾規(guī)模約50人,接納外校報(bào)名博士生25人,住研究生公寓。

[聯(lián)系人}:華東師大數(shù)學(xué)系辦公室張紅艷 hyzhang@math.ecnu.edu.cn, (021) 54342609

[致謝]

本次暑期學(xué)校受到華東師大研究生院培養(yǎng)處暑期學(xué)校項(xiàng)目、 數(shù)學(xué)系111項(xiàng)目及國家自然科學(xué)基金項(xiàng)目等支持。特此致謝!

更多信息請查看學(xué)歷考試網(wǎng)

由于各方面情況的不斷調(diào)整與變化,易賢網(wǎng)提供的所有考試信息和咨詢回復(fù)僅供參考,敬請考生以權(quán)威部門公布的正式信息和咨詢?yōu)闇?zhǔn)!

2026上岸·考公考編培訓(xùn)報(bào)班

  • 報(bào)班類型
  • 姓名
  • 手機(jī)號
  • 驗(yàn)證碼
關(guān)于我們 | 聯(lián)系我們 | 人才招聘 | 網(wǎng)站聲明 | 網(wǎng)站幫助 | 非正式的簡要咨詢 | 簡要咨詢須知 | 新媒體/短視頻平臺 | 手機(jī)站點(diǎn) | 投訴建議
工業(yè)和信息化部備案號:滇ICP備2023014141號-1 云南省教育廳備案號:云教ICP備0901021 滇公網(wǎng)安備53010202001879號 人力資源服務(wù)許可證:(云)人服證字(2023)第0102001523號
云南網(wǎng)警備案專用圖標(biāo)
聯(lián)系電話:0871-65099533/13759567129 獲取招聘考試信息及咨詢關(guān)注公眾號:hfpxwx
咨詢QQ:1093837350(9:00—18:00)版權(quán)所有:易賢網(wǎng)
云南網(wǎng)警報(bào)警專用圖標(biāo)
中文字幕免费精品_亚洲视频自拍_亚洲综合国产激情另类一区_色综合咪咪久久
欧美日韩在线另类| 亚洲伦理久久| 久久精品综合一区| 欧美在线关看| 久久久久久香蕉网| 欧美日韩一区二区在线视频| 国产欧美日韩一区二区三区| 亚洲精品一区二| 欧美伊久线香蕉线新在线| 欧美激情综合亚洲一二区| 国产一区二区三区久久精品| 一本大道久久a久久精品综合| 久久精品一区二区国产| 国产精品久久久久aaaa樱花| 亚洲电影网站| 久久精品1区| 国产精品视频导航| 亚洲视频综合在线| 欧美激情 亚洲a∨综合| 国产自产在线视频一区| 性做久久久久久久免费看| 欧美日韩午夜| 一本一本久久a久久精品综合妖精 一本一本久久a久久精品综合麻豆 | 亚洲免费在线| 欧美成人在线网站| 亚洲第一主播视频| 欧美一二三视频| 欧美精品一区在线发布| 亚洲黄网站黄| 欧美成人精品福利| 在线播放亚洲| 欧美一级淫片播放口| 国产精品久久国产三级国电话系列| 亚洲精品免费电影| 欧美精品在线观看一区二区| 亚洲人成人77777线观看| 久久久精品日韩| 国产日韩欧美二区| 国产精品99久久久久久宅男| 欧美日本网站| 99综合在线| 欧美日韩精品在线观看| 在线亚洲+欧美+日本专区| 欧美精选午夜久久久乱码6080| 亚洲成色www久久网站| 久久激情五月丁香伊人| 国产欧美三级| 美女诱惑一区| 日韩一区二区高清| 国产精品a级| 欧美一级理论性理论a| 国产亚洲永久域名| 久久噜噜亚洲综合| 99亚洲视频| 国产区精品在线观看| 久久久免费精品视频| 亚洲高清av在线| 欧美日韩国产在线| 午夜欧美大片免费观看| 在线看欧美视频| 欧美日韩a区| 欧美一区二区啪啪| 亚洲福利视频网| 欧美日韩亚洲一区在线观看| 午夜精品久久久久久久男人的天堂| 国产欧美69| 欧美+亚洲+精品+三区| 99这里有精品| 国产资源精品在线观看| 欧美黄色网络| 久久av一区| 亚洲人成人一区二区在线观看| 国产精品国产福利国产秒拍| 性娇小13――14欧美| 亚洲国产日韩欧美在线图片| 欧美午夜片在线观看| 久久久蜜桃精品| 在线亚洲美日韩| 一区精品在线| 国产精品午夜久久| 欧美高清在线精品一区| 久久噜噜亚洲综合| 亚洲欧美日韩精品久久亚洲区| 精品88久久久久88久久久| 国产精品久久久久久久久久ktv | 国产精品大全| 久久婷婷色综合| 亚洲欧美不卡| 亚洲精品小视频在线观看| 国产视频精品网| 欧美日韩综合久久| 免费观看在线综合| 久久久www| 欧美一区二区视频在线观看| 99re国产精品| 亚洲精品永久免费| 悠悠资源网亚洲青| 国语自产精品视频在线看| 国产精品久久久久aaaa樱花| 欧美激情91| 免费看的黄色欧美网站| 久久精品国产免费| 欧美一级视频| 午夜精品一区二区三区电影天堂| 亚洲美女精品久久| 亚洲国产一成人久久精品| 激情六月婷婷综合| 韩日在线一区| 亚洲高清影视| 亚洲国产乱码最新视频| 精品91久久久久| 国产一区再线| 好男人免费精品视频| 国产亚洲第一区| 国产人久久人人人人爽| 国产精品青草久久| 国产精品免费在线| 国产精品老牛| 国产日韩欧美一二三区| 国产亚洲亚洲| 精品二区视频| 91久久线看在观草草青青| 亚洲精品社区| 在线亚洲高清视频| 亚洲天堂av图片| 欧美一区二区三区在线| 久久婷婷国产综合精品青草 | 国产精品极品美女粉嫩高清在线 | 宅男精品视频| 亚洲欧美日本精品| 欧美亚洲综合在线| 欧美一区在线直播| 久久久久久国产精品一区| 免费欧美在线视频| 欧美深夜影院| 国产人成精品一区二区三| 好吊色欧美一区二区三区视频| 一区二区三区我不卡| 91久久在线| 亚洲一级高清| 欧美一区二区三区另类 | 好看的日韩视频| 怡红院精品视频在线观看极品| 亚洲风情在线资源站| 日韩视频第一页| 午夜视频一区| 久久久久九九九| 国产精品福利在线| 一区二区三区在线免费播放| 亚洲福利视频网站| 欧美一级理论性理论a| 欧美精品在线播放| 精品动漫3d一区二区三区免费版 | 国产色爱av资源综合区| 国产在线播放一区二区三区| 最新亚洲激情| 久久久99精品免费观看不卡| 欧美日韩成人综合在线一区二区| 国产欧美视频在线观看| 一区二区三区久久久| 久久在线免费| 国产日产欧美一区| 欧美在线观看一二区| 欧美精品一区二区三区四区| 国产在线视频欧美一区二区三区| 亚洲国产成人av好男人在线观看| 午夜精品成人在线| 欧美日韩日本视频| 免费成人在线视频网站| 国产美女一区| 香蕉成人伊视频在线观看| 欧美日韩精品一区二区三区四区| 在线国产精品播放| 久久久久久**毛片大全| 国产精品日韩精品欧美精品| 一区二区日本视频| 欧美日韩国产区一| 日韩视频在线永久播放| 欧美福利视频网站| 亚洲国产一区二区三区高清 | 国产一区在线观看视频| 欧美一区免费视频| 国产精品网站在线观看| 亚洲一区在线观看视频| 欧美特黄a级高清免费大片a级| 最新中文字幕亚洲| 欧美国内亚洲| 日韩午夜免费视频| 欧美日韩精品一区| 日韩视频在线观看免费| 欧美日韩大陆在线| 亚洲一区二区三区在线视频| 欧美日韩在线视频观看| 一区二区免费看| 国产精品色婷婷久久58| 亚洲在线网站| 国产一区二区三区免费观看| 久久久久九九九| 91久久精品网| 欧美另类变人与禽xxxxx|